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Abstract In this paper a new method for obtaining functions with a given singular behavior that satisfy a class
of partial differential equations is presented. Differential equations of this class contain operators of the form ∇2n ,
where n is a positive integer. The method uses Wirtinger calculus which enables one to invert the Laplacian in
combination with the decomposition method introduced by Adomian at the end of the twentieth century. The pro-
cedure uses a singular holomorphic function as its basis, and constructs the solution term by term as an infinite
series of functions; the process consists of an infinite number of steps of integration. This method is applied to
construct a number of singular solutions to the modified Helmholtz equation in the context of groundwater flow.
These functions are discharge potentials, which are two-dimensional functions by definition. The gradient of the
discharge potential is the vertically integrated flow over the thickness of an aquifer, or water-bearing layer. The
discharge potentials of interest here are those used in the analytic element method. This method, as originally con-
ceived, relies on the superposition of suitably chosen holomorphic functions, and is a form of a method known as the
Trefftz method, not to be confused with the Trefftz method applied to finite element techniques. The main analytic
elements used are singular line elements, characterized by either a jump along the element in the tangential or the
normal component of the discharge vector. The analytic line elements for the case of divergence-free irrotational
flow are well established and many of these are forms of singular Cauchy integrals. Application of the analytic
element method to more general cases of flow, governed for example by the modified Helmholtz equation (flow in
systems of aquifers separated by leaky layers) and the heat equation (transient flow) is possible using the method
presented in this paper. The latter application is beyond the scope of this paper, but it is worth noting that for that
case the constant that occurs in the modified Helmholtz is replaced by a general function of time and application
of Laplace transforms can be avoided. A method for constructing such functions is presented; the procedure for
constructing these functions is referred to as the generating analytic element approach. Application of this approach
requires the existence of the holomorphic singular line element. The approach is discussed and an example for the
case of a line-sink for a system of two aquifers separated by a leaky layer and bounded above by in impermeable
boundary is presented.
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164 O. D. L. Strack

1 Introduction

Our objective is to present a new method for obtaining functions with a given singular behavior at either a point,
along a curve, or along a straight line. These functions satisfy a member of a certain class of partial differential
equations whose leading terms contain an operator of the form ∇2n , where n is a positive integer. They are expressed
in terms of an infinite series of functions that are created by successive application of the inverse Laplacian, ∇−2.
The first function in this series is always either the real or the imaginary part of a holomorphic function with the
desired singular behavior. The method relies on the use of Wirtinger calculus [1], [2, pp. 63–70] in combination
with the decomposition method [3, pp. 6–337].

The singular functions thus created are useful in the analytic element method [4, pp. 404–514], [5, pp. 205–231],
[6], and the special issues devoted to this technique: Journal of Hydrology, 1999, Volume 226, and Ground Water,
2004, Volume 43(6), 2005, Volume 44(1). We refer to the method to be presented in this paper as the generating
analytic element approach, abbreviated as GAEA, and introduce it by creating analytic elements suitable for mod-
eling groundwater flow in systems of leaky aquifers. Flow in such systems is governed by the modified Helmholtz
equation.

The analytic element method is a technique based upon the idea that boundary-value problems can be solved
by superposition of suitably chosen base functions (which makes it a Trefftz method) which each contain certain
degrees of freedom. In the analytic element method we are ultimately concerned with determining a vector field,
for the case of this paper a two-dimensional one. Nearly all of the base functions model discontinuities of either the
normal or the tangential component of the vector field along a linear boundary segment; the element simulates this
discontinuity. The base functions are then superimposed and their degrees of freedom determined so as to model
linear two-sided boundaries, boundaries of sub-domains, or boundaries that separate parts of the domain from other
parts.

The analytic element method differs from most related techniques by one or more of the following properties:
the freedom of choice in how the analytic element is constructed, the stand-alone character of each analytic element
in that it satisfies well-defined conditions that can be adjusted as needed by variation of its free parameters, and
in that the analytic elements, always represented by functions, are defined throughout the infinite domain. Discon-
tinuities in the parameters that enter into the partial differential equations, such as aquifer properties in the case
of groundwater flow, do not require a subdivision of the domain; the appropriate analytic elements simulate the
required discontinuities across the boundaries of such sub-domains and can be evaluated on either side of these
discontinuities; the line-doublets presented in this paper were derived for this purpose, but their use will not be
demonstrated in this paper.

The analytic element method, AEM, has been applied successfully to a range of groundwater flow problems. We
refer the reader to [6] for an overview of this method. Extension of the AEM to problems governed by the modified
Helmholtz equation has been achieved, but so far with moderate success. Bakker and Strack [7] developed line
elements of constant strength (first order) which suffer from the drawback that the length of the element is limited
by the leakage factor, a factor that depends solely on the properties of the system.

Leaky aquifer systems consist of water-bearing layers (aquifers) separated by layers of relatively low hydraulic
conductivity. Solutions to flow in systems of leaky aquifers require the solution of a system of coupled partial
differential equations; see e.g., [8, pp. 377–395]. Solutions for cases with wells in such systems are well known; see
[7–11], and consist of a sum of solutions to the modified Helmholtz equation. The example presented in this paper
is concerned with the case that the upper boundary is impermeable. The potential defined in each of the aquifers
consists of the sum of a single harmonic function and a solution to the modified Helmholtz equation. The latter
solutions are Bessel functions for the case of a well that is screened in any of the aquifers. It may be noted that the
method of solution presented here can be readily extended to the case of multiple aquifers using the methodology
introduced by [9].

The functions that constitute the discharge potential for leaky aquifer flow are either harmonic or pan harmonic;
pan-harmonic functions satisfy the modified Helmholtz equation. The pan-harmonic potential for a line-sink was
first obtained by integration along a line of a polynomial representation of the Bessel function by Heitzman [12],
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The generating analytic element approach with application to the modified Helmholtz equation 165

and was later used by Keil [13] to obtain an approximate expression for flow in a system of leaky aquifers with an
unconfined upper boundary. The potential presented by Heitzman is valid only in a relatively small region near the
line element, and the extraction rate along the line-sink is a constant. Bakker and Strack [7] presented an expression
for a line-sink that was obtained also by integration of a polynomial expression of the Bessel function that has a
wider range of validity than that used by Heitzman, but also has a limited range of validity and has a constant rate
of extraction along the element. Although this function can be evaluated at much larger distances from the element
than the one developed by Heitzman, it still suffers from the same basic problem of a limited range of applicability,
which forces subdivision of the object to be modeled in segments such that the solution remains applicable over
the segment. As a consequence, the subdivision of the elements depends on the aquifer data, and thus limits the
flexibility of a model based on such elements.

We present an approach in this paper and apply it to obtain functions that satisfy the modified Helmholtz equation
with any desired accuracy. These functions are useful i-n analytic element models of regional groundwater flow.
Such models involve very large numbers of elements (thousands) and computational efficiency is a major issue. A
study carried out by Hanson [14] shows that leakage induced by a well in a single leaky aquifer can be neglected
for all practical purposes beyond distances of six times the leakage factor �, i.e., a factor that depends solely on
the aquifer properties. We propose to disregard leakage induced by the element considered, at distances beyond
eight times the leakage factor. For the case of radial flow toward a point sink in an infinite aquifer, described math-
ematically by the Bessel function K0 (r/�), this implies that its values can be neglected for r ≥ 8�. In order to
obtain a consistent solution, i.e., a solution that satisfies a given differential equation and boundary conditions, we
will construct a solution to the modified Helmholtz equation that satisfies the condition that the potential vanishes
along a circle of radius 8�. The effect of the approximation can then be assessed by computing the total discharge
over the bounding circle, which should be sufficiently small to be neglected for the application in question. It is
important to note that this approach is not necessary; it is possible to apply the approach and yet obtain a solution
that is valid throughout the domain, but is expected to require far more computational effort. We present the solution
for this case of radial flow toward a point sink, and will discuss the magnitude of the difference between the Bessel
function and the function presented here. Note, however, that the discrepancy between the two functions is due only
to the difference in boundary conditions, and does not imply that the new solution does not satisfy the modified
Helmholtz equation.

2 GAEA: The generating analytic element approach

We demonstrate the approach first for some elementary cases, for which solutions already are in existence. This has
the advantage that the results are verifiable by comparison with the existing functions, and has the further advantage
of relative simplicity.

The approach is based upon first selecting a holomorphic function that has the desired singular behavior; the
singularity may be at infinity. Examples that we will use are the Taylor series (singular only at infinity), the function
that has a logarithmic singularity (a well) at the origin, and, finally the potentials for the line-sink and the line-
doublet, or the single and double layers, respectively. The chosen holomorphic function is used as the generating
analytic element in the GAEA to construct a function that satisfies the modified Helmholtz equation. It is worth
remembering, however, that the generating analytic element approach is not restricted to the Helmholtz equation,
but can be applied equally well to obtain solutions to other differential equations.

In what follows we demonstrate how the GAEA makes it possible, by a process of successive integration, to
construct basic analytic elements that are solutions of the modified Helmholtz equation and can then be super-
imposed to obtain solutions to boundary value problems. This solution consists of an infinite series of functions;
convergence of this series is determined on a case-by-case basis by considering the form of the solution. We will
focus our attention first on the modified Helmholtz equation by itself, and later apply these solutions to solve some
problems of leaky aquifer flow.

123



166 O. D. L. Strack

We write the modified Helmholtz equation in the following form

∇2� = �

�2 , (1)

where� [L] is the leakage factor; we will express this parameter with the dimension of length in terms of physical
properties when discussing the leaky aquifer system.

We will make use of the complex variable z = x + iy defined in the physical plane, its complex conjugate
z̄ = x − iy, and Wirtinger calculus, which is based on the reversible coordinate transformation

z = x + iy z̄ = x − iy, (2)

x = 1

2
(z + z̄) y = 1

2i
(z − z̄). (3)

Using the standard rules that govern coordinate transformations, we can transform the components of vectors and
tensors, in particular the Laplacian, which transforms as

∇2� = 4
∂2�

∂z∂ z̄
. (4)

We will concern ourselves mainly with line segments; the case of the Taylor series and that of the point sink are
exceptions. We introduce a dimensionless complex variable Z for the former cases as

Z = 2z − (z1 + z2)

z2 − z1
, (5)

where z1 and z2 represent the coordinates of the end points of a line in the z = x + iy plane, so that (4) may be
transformed

∇2� = 4
∂2�

∂z∂ z̄
= 4

∂2�

∂Z∂ Z̄

d Z

dz

d Z̄

d̄z
= 16

L2

∂2�

∂Z∂ Z̄
= �

�2 , (6)

where

L2 = (z2 − z1)(z̄2 − z̄1). (7)

We see from (6) that

∂2�

∂Z∂ Z̄
= β2�, (8)

where β is a dimensionless constant,

β = L

4�
, (9)

We introduce a series of real functions H
n

with the following property

∂2 H
n

∂Z∂ Z̄
= H

n−1
(10)

and select the first function H
0

as the generating analytic element for the GAEA, which we represent as �
0

, i.e,

H
0

= �
0
, (11)

where H
0

is harmonic, i.e.,

∂2 H
0

∂Z∂ Z̄
= 0. (12)

With the function H
0

known, H
1

can be found by successive integration of (10) with respect to Z and Z̄ for n = 1.

Repeating this procedure will yield expressions for the functions H
n

. It is important to note that this integration

process is possible thanks to the representation (4) of the Laplacian.
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We discuss irrotational groundwater flow as the application in this paper, and refer to the function to be constructed
in that context. The vertically integrated discharge in an aquifer is represented in complex form as

W = Qx − iQy = −2
∂�

∂z
, (13)

where Qx and Qy are the components of the discharge vector, and � is called the discharge potential. We write
this discharge potential as the following infinite series

� =
∞∑

n=0

β2n H
n
. (14)

Substitution of this expression for � in the differential equation (8) yields
∞∑

n=1

β2n H
n−1

= β2
∞∑

n=0

β2n H
n
. (15)

We renumber indices in the first sum and consider only a finite number of terms, N ,
N−1∑

n=0

β2(n+1)H
n

= β2
N∑

n=0

β2n H
n
. (16)

The difference between the left and the right side of the equation is given by

∂2�

∂Z∂ Z̄
− β2� = β2n H

N
. (17)

If the series of functions converges, then, given an infinite number of terms, the differential equation will be satisfied
exactly. The series of functions presented in this paper all converge absolutely, and we will be able to reduce the
error due to truncation to within machine accuracy. Thus, the differential equation is met exactly in the same manner
as we can compute the Bessel function exactly; we are limited by machine precision.

The procedure can be carried out in terms of complex functions; this is often an advantage because the generating
analytic element is known as a function of a single complex variable. In that case, we use complex functions �

n
to

replace the real functions H
n

so that

∂2�
n

∂Z∂ Z̄
= �

n−1
. (18)

The potential is the real part of the sum of functions �
n

, each multiplied by a term β2n

� = 1
2

N∑

n=0

β2n
[
�
n

+�
n

]
. (19)

3 The non-singular holomorphic function

If the generating analytic element does not contain any singularities in the domain of interest, then we can represent
the function �

n
in general form as follows. Consider the following expression

�
n

= Z̄ n

n! f
n
(Z), (20)

where the functions f
n
(Z) have the following property

d f
n

dZ
= f

n−1
. (21)
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This function has the desired property (18). We verify this by first differentiating (20) with respect to Z̄

∂�
n

∂ Z̄
= n Z̄n−1

n! f
n
(Z) (22)

and next differentiate with respect to Z , which yields

∂2�
n

∂Z∂ Z̄
= Z̄ n−1

(n − 1)! f
n−1
(Z) = �

n−1
. (23)

Indeed, the function �
n

has the desired property (18).

We mentioned in passing that this procedure is not applicable for singular line elements. This is so because such
functions exhibit discontinuities along a line connecting their singular points to infinity. Since these discontinuities
are multiplied by powers of Z̄ , undesired singular behavior results. We need to introduce a different form of the
function for singular generating analytic elements. The exception is the point sink, where it appears fortuitously
that the potential does not have a branch cut at all.

It is important to note that the procedure outlined above produces a solution to the differential equation that has
desired singular behavior.

4 The Taylor series

We use the GAEA first to generate a function � that satisfies (1) in the finite domain with no singularities inside
the circle that encloses the domain. We do this by choosing as the generating function the Taylor series:

�
0

=
∞∑

m=0

�
0

m =
∞∑

m=0

am Zm . (24)

We consider a single power Zm , and construct the function f
n

according to the definition (21) which yields, denoting

the power by the index m

f
n

m(Z) = Zm+n

(m + n)! . (25)

We apply this to each term in the Taylor series, use (20), and obtain

�
n

=
∞∑

m=0

am

{
Z̄ n Zm+n

n!(m + n)!
}

=
∞∑

m=0

am

{
(Z̄ Z)n Zm

(m + n)!n!
}
. (26)

An expression for the potential � is obtained by the use of (19)

� = 1
2

∞∑

n=0

∞∑

m=0

β2n

(m + n)!n!
[
am Z̄n Zm+n + ām Zn Z̄m+n]

. (27)

Note that each term contains a factor 1/[(m + n)!n!] which will cause the individual terms to decrease in value
rapidly beyond a certain number of terms, causing the series to converge to some fixed value. This appearance of
factorials turns out to occur in all the applications discussed in this paper. Note that the series converges absolutely;
the ratio of the modulus of the (n + 1)st term divided by that of the nth one vanishes for n → ∞.

The truncation error due to taking a finite number of terms in this case consists of two parts; the first part is due
to truncation of the Taylor series that represents the generating analytic element; the second part is due to truncation
of the series of functions.
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5 The point sink

We choose the complex potential for the point sink of unit discharge as the next generating analytic element. We
carry out this analysis for a complex function �

0
, defined as

�
0

= 1

2π
log Z , −π < Im log Z ≤ π, (28)

where we take the branch cut, in this and all further uses of the complex logarithm, along the negative real axis;
Z is a dimensionless complex variable, defined for this case as

Z = z/R, (29)

so that the differential equation in dimensionless form becomes for this case

∇2� = 4
∂2�

∂z∂ z̄
= 4

R2

∂2�

∂Z∂ Z̄
= �

�2 , (30)

where R is an arbitrary length. We observe that

∂2�

∂Z∂ Z̄
= β2�, (31)

where

β = R

2�
. (32)

We introduce a function f
n

defined as

f
n
(Z) = 1

n! Zn [
log Z − ψ∗

n+1

]
, n ≥ 1, (33)

where

ψ∗
n+1 =

n∑

m=1

1

m
, n ≥ 1,

ψ∗
n+1 = 0, n = 0. (34)

This function has the property that

d f
n

dZ
= f

n−1
(35)

and we see from (28) that

�
0

= 1

2π
f
0
. (36)

We use (20) to obtain an expression for H
n

which yields

H
n

= 1

2

[
�
n

+ �̄
n

]
= 1

4πn!
[

Z̄ n f
n

+ Zn f̄
n

]
. (37)

We may write this with (33) in the form

H
n

= 1

4πn!
[

Zn Z̄n

n! log Z + Z̄ n Zn

n! log Z̄ − 2
Zn Z̄n

n! ψ∗
n

]
(38)

or

H
n

= 1

4π(n!)2 (Z Z̄)n
[
log[Z Z̄ ] − 2ψ∗

n

]
. (39)
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This potential may be expressed in terms of a radial coordinate r , with its dimensionless form r/R and we have
r

R
=

√
Z Z̄ . (40)

The potential for a point sink of unit discharge becomes, using (19):

� =
∞∑

n=0

β2n H
n
(Z , Z̄). (41)

6 Solving boundary-value problems

The approach to solving boundary-value problems using the analytic element method consists of creating singular
solutions to the partial differential equation considered. The singular solutions have degrees of freedom, embodied
in the function that controls the singularity. These singular functions usually represent a discontinuity of a magnitude
given by a series expansion, such as a polynomial or a Fourier series. The singular solutions are chosen in such
a way that their contribution to the far-field behavior of the solution is controlled, i.e., the boundary condition at
infinity appropriate to the element in question is applied to each function individually. A characteristic of the analytic
element method is that each solution to the governing equations can be constructed in isolation; superposition is
used to obtain the solution to the desired problem; only then are the elements chosen according to the phenomenon
that they have to represent, and the degrees of freedom are used to ensure that the sum of individual solutions
satisfies the boundary conditions with the desired accuracy.

The general solution to the differential equation considered in the preceding section consists of a linear combi-
nation of two linearly independent solutions. The solution for the case of a point sink in an infinite domain consists
of a term that is singular at the origin, the modified Bessel function of the second kind and order zero, K0(r/�),
which represents the radial flow toward the point sink and approaches minus the natural logarithm near the point
sink. The second solution is the modified Bessel function of the first kind and order zero, I0(r/�), which is equal to
1 with a derivative of zero at the origin, and becomes infinite for r → ∞. The generating analytic element approach
is based upon the idea of generating a solution to the partial differential equation, using the Adomian decomposition
method combined with Wirtinger calculus. This approach will yield the singular term plus a non-singular solution;
for the case of the point sink, this implies that the solution will also contain some unknown factor times the modified
Bessel function I0. The modified Bessel function K0 (r/�) decreases rapidly with increasing values of r/�, and is
usually neglected in the field of applied groundwater flow at distances larger than about 4�. Hanson [14], showed
that, for the case of a well in a multi-aquifer system, the effect of the well (point sink) can be neglected at distances
over 6�. A difficulty in computing the modified Bessel function K0(r/�) for large r/� is that many terms in the
expansion need to be taken into account in order to compute the very small values of the function. In this respect
its behavior is similar to that of the expansion of the function e−x about x = 0.

We have two options to determine the non-singular solution uniquely, and to deal with the accuracy problems
at large distances. The first, and perhaps the most elegant from a mathematical viewpoint, is to use the solution
obtained using GAEA and couple it to the general solution to the modified Helmholtz equation valid between a
circle of finite radius and one of a radius that approaches infinity, which can be written in terms of an infinite series
of products of solutions to the separated equation in two dimensions; see [15, p. 16]. This can be done using the
principle of holomorphic matching [16], which makes it possible to link the two solutions along a chosen interzonal
boundary in such a way that both components of the gradient of the potential are continuous across that boundary.

We will use an alternative approach here in view of numerical efficiency. We neglect the effect of the source of
influence at distances larger than 8� by adding a non-singular solution and requiring that the singular and non-sin-
gular solutions vanish at a circle centered at the singularity and of radius 8�. Comparison with the exact solution
for the case of the point sink shows that the approach renders a solution that approximates the exact one very well.

We can determine a second linearly independent solution to the modified Bessel equation by taking a second
generating analytic element, valid for this case of radial flow, besides the singular one, log r/�. The only other
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function that satisfies Laplace’s equation for the special case of radial flow is, besides the logarithm, the constant;
this leads to the series (27) with the generating analytic element the constant a0, i.e., all am = 0,m > 0. We obtain,
representing this potential as �

e

�
e

= a0

4π

∞∑

n=0

β2n

(n!)2 (Z Z̄)n . (42)

The complete solution to the problem consists of the sum of the series for the point sink and the latter series

� = a0

4π

∞∑

n=0

β2n

(n!)2 (Z Z̄)n +
∞∑

n=0

β2n H
n
(Z , Z̄). (43)

We use expression (39) for H
n

and obtain

� = 1

4π

∞∑

n=0

β2n

(n!)2 (Z Z̄)n
{
log[Z Z̄ ] − 2ψ∗

n + a0
}
. (44)

We set zz̄ equal to R2 = (κ�)2, where κ is a positive number, and set the potential equal to zero, which yields,
noticing that Z Z̄ = 1 for zz̄ = R2

� = 1

4π

∞∑

n=0

[
βn

n!
]2 [−2ψ∗

n + a0
] = 0. (45)

We solve this for a0 and obtain

a0 = 2

∑∞
n=0(β

n/n!)2ψ∗
n∑∞

n=0(β
n/n!)2 , (46)

where

β = R

2�
= κ

2
. (47)

One of the reviewers of this paper noted that it can be shown, using equations (9.6.12) and (9.6.13) in [17, p. 375],
that this solution is identical to the solution to the stated boundary-value problem using the Bessel functions K0

and I0

� = − 1

2π

[
K0(r/�)− K0(R/�)

I0(R/�)
I0(r/�)

]
. (48)

The difference between the modified boundary-value problem with a boundary with fixed potential at given R/�
and the solution represented by the single Bessel function K0(r/�) may be well expressed in terms of the relative
difference in discharge that crosses the boundary r = R for the two cases. We express this relative difference by
the use of (48) as follows

D = K0(R/�)I1(R/�)

K1(R/�)I0(R/�)
. (49)

This quantity is plotted versus R/� in Fig. 1.

7 The general case

We will determine the individual functions for the singular line elements in a similar fashion. As for the case of
the point sink, the complete function will consist of two parts: the singular line element itself, determined by the
GAEA, and a non-singular solution. The boundary condition that the potential vanishes along a fixed boundary,
in this case an ellipse, rather than a circle, will be used to express the unknown coefficients in the non-singular
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Fig. 1 Plot of the relative
difference in discharge
flowing over the boundary
r = R as a function of R/�

solution, the Taylor series, in terms of the unknown constants that control the discontinuity of the line element. The
functions presented in the following sections will contain an arbitrary solution to the governing equation as will
become clear from the derivation. In fact, we will add specially chosen functions to ensure that the discontinuity is
limited to the element, rather than extends to infinity. One such function is added at each successive integration of
the Laplacian as part of the process of constructing the solution. The solution will become unique only after adding
the function obtained using the Taylor series as the generating analytic function.

Our purpose is to create individual analytic elements, to be used when constructing models by superposition. We
therefore are concerned only with the properties of these special functions and, in particular, the convergence of
their infinite series. The interested reader is referred to the literature for a more general treatment of the Adomian
decomposition method [3].

8 Line elements

The functions that we presented so far in this paper are reformulations of existing solutions. The functions that we
present in what follows, however, are new. The singular line elements that we refer to here as line-doublets are also
called potentials for double layers, and are obtained from a singular Cauchy integral, see [4, pp. 283–302] and [18].
The latter author introduced the method of over-specification, which makes it possible to achieve a high degree of
accuracy for the holomorphic line elements of high order in terms of boundary values. We derive in this section
the potentials for a line sink and a line doublet that satisfy the modified Helmholtz equation. We use the GAEA,
with the high order line-elements as the generating analytic elements. The derivation of the expressions for the
potentials for the line elements require special attention; these elements exhibit branch cuts and we must take care
not to introduce unwanted discontinuities. We develop a technique for constructing these functions in such a way
that only the generating analytic element is singular and exhibits a discontinuity; all the higher order terms in the
series, i.e., all terms for n ≥ 1, will not exhibit a jump.

We choose the points z1 and z2 in expression (5) for the dimensionless variable Z as the endpoints of the element,
and L represent its length. The differential equation has the form (8) with β given by (9).

∂2�

∂Z∂ Z̄
= β2�. (50)

Note that in each of the successive integrations of (50) with respect to Z and Z̄ , an arbitrary real function of the
form h(Z) + h̄(Z̄) can be added to the solution. We choose such additional functions in such a way that only the
first term in the expansion, the generating analytic element, has a discontinuity. However, other functions could be
added. The addition of a non-singular solution, obtained with the Taylor series as the generating analytic element,
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will make the final solution unique, after the application of the boundary condition along the bounding ellipse as
we did for the case of the point sink.

9 The line doublet

9.1 The holomorphic functions F and f

The generating analytic element used for the line-doublet is discussed in [4, p. 297]. The line-doublet has the prop-
erty that the potential is discontinuous across the element, and therefore the tangential component of its gradient
also, except when the jump in potential is a constant. Line-doublets are useful for modeling discontinuities in the
tangential component of flow, such as they occur along a boundary that separates two domains with different trans-
missivities. The complex potential 	

db
is the holomorphic function with the discharge potential as its real part and

the stream function as its imaginary part. The stream function is continuous across the line-doublet; a discontinuity
in the stream function corresponds to a discontinuity in the normal component of flow, i.e., to extraction along the
element. It is an essential property of the line-doublet that only the tangential component of flow jumps, whereas
the normal component of flow is continuous. The complex potential 	

db
represents a line doublet of order M , and

has the form

	
db

= 1

2π i

M∑

m=0

am Zm log
Z − 1

Z + 1
+ 1

2π i

M−1∑

m=0

am Pm(Z) (51)

where the am are real coefficients to be determined from the boundary condition along the element,

Imam = 0, m = 0, 1, . . .M. (52)

The function Pm(Z) is a polynomial of degree m − 1 with coefficients determined from the condition that 	
db

is of

order 1/Z for Z → ∞,

Pm(Z) =
m−1∑

j=0

β
m

j Z j , m = 0, 1, . . .M. (53)

For the present analysis we consider only the term 	
db

m defined as

	
db

m = Zm

2π i
log

Z − 1

Z + 1
+ 1

2π i
Pm(Z), m = 0, 1, . . .M. (54)

We write

Zm = {(Z − 1)+ 1}m =
m∑

k=0

(
m
k

)
(Z − 1)k (55)

and

Zm = {(Z + 1)− 1}m =
m∑

k=0

(
m
k

)
(Z + 1)k(−1)m−k, (56)

where
(

m
k

)
= m!

k!(m − k)! . (57)

We may now write (54) as follows

	
db

m = 1

2π i

{
m∑

k=0

αmk

[
(Z − 1)k log(Z − 1)− (−1)m−k(Z + 1)k log(Z + 1)

]
+ Pm(Z)

}
. (58)
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We introduce functions F
n

m as follows

F
n

m(Z) = 1

i

{
m∑

k=0

αmk

[
f
n

k(Z − 1)− (−1)m−k f
n

k(Z + 1)

]
+ P

n
m(Z)

}
,

m = 0, 1, . . .M, n = 0, 1 . . . , (59)

where

αmk =
(

m
k

)
(60)

f
n

m(Z) = m!
(n + m)! Zm+n

⎡

⎣log Z −
n∑

j=1

1

m + j

⎤

⎦ , n ≥ 1 (61)

f
n

m(Z) = m!
(n + m)! Zm+n log Z n = 0, (62)

and

P
n

m(Z) =
m−1∑

j=0

β
m

j p
n

j (Z), (n ≥ 1), P
0

m(Z) = Pm(Z). (63)

The functions p
n

m are defined as

p
n

j (Z) = Z j+n

( j + 1)( j + 2) . . . ( j + n)
, (64)

so that

d p
n

j (Z)

dZ
= p

n−1
j (Z), p

n
j (Z) = p

n−1
j (Z)

Z

j + n
. (65)

We observe that (58) can be expressed in terms of F
0

m as follows

	
db

m = 1

2π
F
0

m(Z). (66)

The functions F
n

m and f
n

m have the property that

dF
n

m

dZ
= F

n−1
m,

d f
n

m

dZ
= f

n−1
m . (67)

We may now write the line doublet that is used as the generating analytic element as the following sum

	db =
M∑

m=0

am

2π
F
0

m(Z). (68)

9.2 The potential �

We write the potential � for the line doublet as a sum of functions as follows

� = 1

2π

M∑

m=0

amReF
0

m(Z)+ 1

4π

M∑

m=0

am

∞∑

n=1

β2n
[
�
n

m(Z , Z̄)+�
n

m(Z , Z̄)
]
, (69)
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where M is the degree of the polynomial of the line doublet that serves as the generating analytic function and
where the am are real coefficients to be determined from the boundary conditions along the element. We recall that
the basis function for the non-singular generating analytic element was chosen as follows, see (20)

�
n

= Z̄ n

n! f
n
(Z). (70)

This representation fails here because of the presence of a branch cut. We modify (70) in such a way that all terms
for n ≥ 1 are multiplied by a factor Z̄ − Z , which vanishes along Z = Z̄ , i.e, along the element, thus eliminating
the effect of the branch cut. It appears that we can meet condition (18) only if we resort to a sum of functions to
represent each term and write, with m again representing the power of Z

�
n

m =
n−1∑

j=0

B
n

j

(n − j)! (Z̄ − Z)n− j F
n+ j

m(Z), m = 0, 1, . . .M, n ≥ 0, (71)

where the constants B
n

j are real and independent of the power m

ImB
n

j = 0, n = 0, 1, . . . , j = 0, 1, . . . n (72)

and where

B
n

−1 = 0. (73)

It it demonstrated in Appendix A that the function �
n

m indeed meets condition (18), provided that the constants B
n

j

meet the following constraints

B
n

j = B
n

j−1 + B
n−1

j , j = 0, 1, 2, . . . n − 1, n = 1, 2, . . . (74)

with the choice

B
0

0 = 1. (75)

The recursive relation (74) together with (75) makes it possible to determine all of the coefficients involved in the
expression for the potential, except the coefficients am which are to be determined from the boundary conditions
along the element. Note that the coefficients B

n
j can be computed a priori; they are independent both of the order

m and the parameter β.

9.3 The discharge function

The discharge function is defined as minus two times the complex derivative of the potential with respect to z,

W = −2
∂�

∂z
= −2

∂�

∂Z

∂Z

∂ z
= −2

∂�

∂Z

2

L
e−iα, (76)

where L is the length of the line element and α the angle between the line element and the x axis. Note that ∂�/∂z
is not equal to the derivative of the function �

n
m , given by (71). The potential is given by (69),

� = 1

2π

M∑

m=0

amReF
0

m(Z)+ 1

4π

M∑

m=0

am

∞∑

n=1

β2n H
n

m(Z), (77)

where the function H
n

m(Z) is defined as

H
n

m(Z) =
n−1∑

j=0

B
n

j

(n − j)! (Z̄ − Z)n− j
[

F
n+ j

m(Z)− (−1)n+ j F
n+ j

m(Z̄)

]
,

m = 0, 1, . . .M, n = 0, 1, . . . , (78)
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where we used that (−1)n− j = (−1)n+ j and made use of the definition of F
n+ j

m , which implies that

F
n+ j

m(Z) = − F
n+ j

m(Z̄). (79)

Differentiation of a term H
n

m with respect to Z gives

∂H
n

m

∂Z
=

n−1∑

j=0

−B
n

j

(n − j − 1)! (Z̄ − Z)n− j−1
[

F
n+ j

m(Z)− (−1)n+ j F
n+ j

m(Z̄)

]

+
n−1∑

j=0

B
n

j

(n − j)! (Z̄ − Z)n− j F
n+ j−1

m(Z) (80)

The derivative ∂�/∂Z is obtained from (77) and (80)

∂�

∂Z
= 1

4π

M∑

m=0

am

dF
0

m(Z)

dZ
+ 1

4π

M∑

m=0

am

∞∑

n=1

β2n∂H
n

m(Z)

∂Z
. (81)

10 The line-sink

10.1 The holomorphic function G

The generating analytic function for the next case is the complex potential for a line-sink of high order, also known
as the complex potential for the single layer. The real part of this complex function is the potential and the imag-
inary part is the stream function. The normal component of flow is discontinuous across the element, whereas the
tangential component is continuous; this property corresponds to a continuous potential and a discontinuous stream
function. It is important to note that the stream function has meaning only for the generating analytic element; it is
not single valued for divergent flow. We introduce the function G

n
m as follows

G
n

m(Z) =
m∑

k=1

αmk

{
f
n

k(Z − 1)− (−1)m−k f
n

k(Z + 1)

}
+ P

n
m(Z), n ≥ 0. (82)

The functions G
n

m differ from the functions F
n

m in two ways only. First, the latter contains a factor 1/ i outside

the summation sign, whereas the former does not. Second, the sum extends from zero to m for the functions F
n

m ,

whereas it extends from one to m for the case of G
n

m . The result of these differences is that the line-sink has a con-

tinuous component of the gradient of the potential along the element, whereas its normal component jumps across
the element. Furthermore, the potential of the line-doublet is infinite at the end points of the element, whereas the
potential of the line-sink is finite at these points.

The functions G
n

m and f
n

m have the property that

∂G
n

m

∂Z
= G

n−1
m,

∂ f
n

m

∂Z
= f

n−1
m, (83)

(compare (59), (61) and (62)). The line-sink that is the generating analytic function is

	
ls

=
M∑

m=0

bm

2π
G
0

m, (84)

where the bm are real constants, to be determined from the boundary conditions

Imbm = 0, m = 0, 1, . . .M. (85)
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10.2 The potential �

We write the potential � for the line-sink as an infinite sum of functions as follows

� = − 1

4π

M∑

m=0

bm

∞∑

n=0

β2n H
n

m(Z , Z̄), (86)

where the minus sign is used so that a positive strength corresponds to extraction, where M is the degree of the
polynomial of the line-sink that serves as the generating analytic function. The functions H

n
m are given by

H
n

m =
n∑

j=0

C
n

j

(n − j)! (Z̄ − Z)n− j
[

G
n+ j

m + (−1)n− j Ḡ
n+ j

m

]
m = 0, 1, . . .M, n ≥ 0 (87)

where the constants C
n

j are real and independent of m

ImC
n

j = 0, n = 0, 1, 2, . . . , j = 0, 1, 2, . . . . (88)

We observe from (86) and (87) that the constant C
0

0 is equal to 1:

C
0

0 = 1. (89)

In Appendix B it is shown that

G
n+ j

m = G
n+ j

m(Z), m = 0, 1, . . .M, n, j = 0, 1, 2, . . . , (90)

Ḡ
n+ j

m = G
n+ j

m(Z̄), m = 0, 1, . . .M, n, j = 0, 1, 2, . . . . (91)

Note that the function G is real for real values of Z .
The form (87) is similar to that chosen for the line-doublet, but not quite the same. The sum now runs for j all

the way up to n, so that not all functions H
n

m are multiplied by a factor Z̄ − Z . The reason for this choice is that the

potential for the line-sink is continuous across the element, as opposed to that for the line-doublet. The generating
analytic element for the line-sink has a discontinuous stream function, rather than a discontinuous potential. Because
the stream function does not exist for the higher-order terms we must enforce the condition of continuity directly
to the discharge vector for all terms with n ≥ 1. We demonstrate in Appendix B that the form (87) indeed renders
a potential function that satisfies the conditions that the Laplacian of the next term equals the previous term in the
series of functions, and that the continuity condition is satisfied.

11 Boundary conditions

We stated, when discussing the potential for a well, that the solution obtained by applying GAEA leads to a combi-
nation of the singular solution with a non-singular solution. A boundary condition other than that along the element
is required to determine the coefficients in the non-singular solution (27). Once again, rather than applying the
boundary condition at infinity, we apply the condition along a boundary far enough from the element that the func-
tion can be neglected beyond that boundary. We choose for the boundary an ellipse that has the end points of the
line element as its foci, and require that the potential, which is the sum of the singular and non-singular solutions
vanishes along that boundary; see fig. 2.

We map the exterior of the ellipse onto the dimensionless χ plane, shown in Fig. 3, using the transformation

Z = X + iY = 1
2

(
χ

ν
+ ν

χ

)
, (92)

so that the ellipse corresponds to χχ̄ = 1. We let χ take on values on the circle and require that the sum of the
potential due to the line element and the potential (27) cancel. Note that inversion of this transformation is not
required in this case. These conditions are used to generate a set of linear equations in terms of unknown 2N
complex (am) and one real (a0) coefficients, where N is the number of terms included in the series.
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Fig. 2 The line element
and bounding ellipse

Fig. 3 The z, Z , and χ planes

12 Numerical considerations

Implementation of the procedure outlined in this paper in a computer program requires considerable care in how
the various functions and terms are computed. Although the series of functions presented in this paper converge
absolutely, this does not imply that the terms can always be computed with sufficient accuracy to lead to meaningful
results. For example, evaluation of the effect of high-order elements (e.g., line elements with polynomials of degree
10 or higher), along the bounding ellipse lead to considerable inaccuracies if programmed directly as presented
above. It is well established for high-order elements, e.g., [4, pp. 291–298], [18,19] that asymptotic expansions are
needed to compute the complex potentials accurately at distances away from the element; usually, a switch to the
asymptotic expansion is made outside of a circle that is only slightly larger than half the element length. The same
is true for the series of holomorphic functions used here. Using asymptotic expansions, computation is possible at
sufficiently large distance from the element; recall that the functions must be computed along the bounding ellipse.

We expand all holomorphic functions, such as F
0

m and G
0

m , asymptotically in terms of a Laurent series of exclu-

sively negative terms, then integrate each term with respect to Z to obtain F
n

m and G
n

m . At each step a constant

of integration must be added; we compute these constants by requiring that the expanded functions are equal to
the original ones. The corresponding analysis is straightforward, but is needed for numerical implementation. We
present the derivation of the expansions in Appendix C.

13 Applications

We present applications in the context of groundwater flow. However, the applications are not chosen for their
hydrological relevance, but in order to test the method thoroughly, and to demonstrate that it can deal with problems
that put the technique under a great deal of strain. For this reason, the governing parameters are chosen so that the
effects are concentrated near the elements, and that strong singularities occur at the end of line elements and at
the points were the elements meet. We achieve this by enforcing a constant value of the discharge potential along
the elements. In practice, piezometric heads, and therefore the discharge potentials, tend to vary along such features
as narrow streams, rather than be constant, but the objective of the paper justifies the choice of values that do not
commonly occur in practice. An additional benefit of enforcing constant values along the elements is that it can be
seen by visual inspection of contour plots that the potential and head are indeed constant along the elements. For
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Fig. 4 Contours of constant
leakage for � = 1

2 L

this same reason, the values of potentials and heads are, in themselves, irrelevant and are omitted from the plots.
The shape of the contours and the fact that they do not intersect the line elements is the real test of the accuracy
of the solution, besides the numerical verification in computer models that the partial differential equations are
indeed satisfied, along with the boundary conditions. However, conditions of variable piezometric head along the
boundaries, as well as other conditions such as those along streams with leaky bottoms (bottoms with resistance
to flow, e.g., resulting from stream deposits) can be applied. The computer program in which these functions are
currently implemented (called MLAEM) is capable of simulating such conditions.

The expressions for the potentials for the line-sink and the line-doublet are implemented in routines written in
object-oriented FORTRAN 95. We present computational results obtained with the computer program MLAEM
for a few cases of groundwater flow below. The first case concerns a single semi-confined aquifer, i.e., an aquifer
of constant thickness separated from a domain (a lake, for example) of constant head by a leaky layer. The second
case concerns a system of two aquifers, confined above by an impermeable upper boundary, and separated by a
leaky layer. We use line-sinks as the elements that induce leakage in both cases.

13.1 A single line-sink in a semi-confined aquifer

The first case concerns flow in a semi-confined aquifer. For that case the solution consists of a solution to the
modified Helmholtz equation with the parameter � given by the equation

�2 = cT, (93)

where c [L] is the resistance of the leaky layer, and T the transmissivity of the aquifer. We present results for a
line-sink of constant strength for two cases. The first example is valid for� = 1

2 L and the second one corresponds to
� = (1/10)L , i.e., one-twentieth of the element length. The contour levels are shown in Fig. 4 for the first example
and in Fig. 5 for the second one. The contour levels are not of interest by themselves; the difference in value in
potential for adjacent contours differ by a constant amount, of course, and the contour plots clearly illustrate that
there is virtually no flow near the bounding ellipse. The ragged shape of the outer contour for the case of the small
� shows that the potential is nearly zero; near-zero values are encountered not just along a curve, but in an area,
due to numerical imprecision.

13.2 A leaky system of two aquifers

We consider the case of leakage between two confined aquifers separated by a leaky layer of resistance c. The
aquifers are numbered from the top down and have transmissivities T1 and T2, where the transmissivity Tj for
aquifer j is defined in terms of the hydraulic conductivity k j and the aquifer thickness Hj as
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Fig. 5 Contours of constant leakage for � = L/10

stream

Fig. 6 Section through the aquifer system with
the stream

Tj = k Hj . (94)

We define the total transmissivity T as the sum of the transmissivities of the two aquifers

T = T1 + T2. (95)

We adopt the Dupuit–Forchheimer approximation, i.e., we neglect the resistance to flow in the vertical direction. A
section through an aquifer system of this kind, with a stream, is shown in Fig. 6.

We define the discharge potentials in the upper and lower aquifers as follows, see [4, pp. 178–186].
1
� = T1

1
φ,

2
� = T2

2
φ, (96)

where
1
φ and

2
φ are the heads in aquifers 1 and 2, respectively. We introduce a comprehensive potential � [20] as

� = 1
�+ 2

� (97)

and a leakage potential G as

G = T1T2

T

(
2
φ − 1

φ

)
= T1

T

2
�− T2

T

1
�. (98)

We note that the leakage potential is proportional to the leakage γ [L/T] through the leaky layer, which is positive
for upward leakage and equal to the difference in head across the leaky layer divided by the resistance c [T], i.e,

γ =
2
φ − 1

φ

c
= G

�2 , (99)

where � is the leakage factor, defined as

�2 = cT1T2

T
. (100)

The components of the discharge vectors in the upper and lower aquifer are equal to the gradients of the discharge

potentials. We introduce the complex discharge functions
j

W in aquifer j as
j

W =
j

Qx − i
j

Qy, (101)

so that

j
W = −2

∂
j
�

∂Z
. (102)

We consider the case that there is no infiltration from rainfall into the system. Thus, the divergence of the
comprehensive discharge vector is zero, and the comprehensive potential is harmonic,

∂2�

∂Z∂ Z̄
= 0. (103)
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There is leakage equal to an amount G/�2 out of aquifer 2. Thus, the potential in aquifer 2 satisfies the differential
equation (compare (6)),

∇2
2
� = 4

∂2
2
�

∂z∂ z̄
= 16

L2

∂2
2
�

∂Z∂ Z̄
= γ = G

�2 . (104)

We observe from (97) and (98) that we may write
2
� as

2
� = T2

T
�+ G. (105)

We substitute this expression for
2
� in (104) and obtain, noting that the comprehensive potential is harmonic

∂2G

∂Z∂ Z̄
= L2

16

G

�2 . (106)

13.3 A stream in the upper aquifer

We consider the case of an aquifer system that is infinite in extent, with flow from infinity toward a stream in the
upper aquifer. The comprehensive potential will be composed of a constant and the potential for a line-sink of some
polynomial strength σ(Z), expressed in terms of the dimensionless local complex variable Z . We represent this
potential as

� = Re	 = Reσ(Z)	
ls
(Z). (107)

There is no singularity in the lower aquifer, and therefore the singular terms of the functions T2/T� and T1T2/T 2G
in (105) must cancel. This implies that the strength (i.e., the jump in the normal component of flow, equal to σ(X)
along the element) of the generating analytic element must be equal to σG with

σG = − T

T1
σ. (108)

The unknowns in the solution that remain, after applying (108), are the coefficients in the polynomial representation
of σ , which is

σ =
M∑

m=0

am Zm . (109)

The unknown real coefficients am are computed by requiring that the head along the stream is equal to a constant.
The remaining constant, the one in the comprehensive potential, is obtained by requiring that the head at some large
distance from the element(s) is given and fixed.

We first consider the case of two high-order elements (order 16) that make an angle of 90◦. The first element runs
from (−100,0) to (100,0) and the second one from (100,0) to (100,200). The head along both elements is specified
at 20 m and the heads far away in both aquifers are 100 m. The hydraulic conductivities and thicknesses in the two
aquifers are equal. The hydraulic conductivities are 10 m/day and the thicknesses are 10 m. The resistance of the
leaky layer is four days. The leakage factor therefore is

� =
√

cT1T2

T
=

√
4 × 1002

100 + 100
= √

200 ≈ 14.14 m; (110)

the ratio of �/(2L) is thus, 0.07, i.e., � is 7% of the length of the elements. We use 40 terms both in the far-field
expansion of the holomorphic functions and 40 terms in the expansion of functions, i.e., N = 40. The final terms in
the expansion are so small that the solution does no longer change, i.e., the accuracy falls within machine precision.
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Fig. 7 Heads in the upper aquifer; contour interval 0.5 m. The 20 m contour coincides with the line segments

Fig. 8 Heads in the lower aquifer; contour interval 0.5 m

This occurrence can be detected by the program, and the expansion can be broken off once the addition of terms
has no effect on the solution.

Plots of the piezometric heads are given in Fig. 7 for the upper and in Fig. 8 for lower aquifer. We present contours
of constant leakage in a separate figure, Fig. 9; note that the leakage varies along the elements as it is driven by the
clearly variable difference in head; it is largest at the endpoints and at the corner where the elements meet.

The final example is concerned with a river modeled with lower order elements (order 5), but otherwise the same
data as for the other examples. The contours of constant head are shown in Fig. 10, the contours of constant head in
the lower aquifer in Fig. 11, and the contours of constant leakage in Fig. 12. The leakage varies between zero (the
outermost contour corresponds to a leakage of 0.01 m/d), and 0.16 m/d.
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Fig. 9 Contours of constant
leakage (detail); contour
interval 0.01 m/day

Fig. 10 Piezometric contours in the upper aquifer; the head along the streams is 20 m and the contour interval is 0.1 m

Fig. 11 Piezometric contours in the lower aquifer; note that the elements are not in the lower, but in the upper aquifer. The lowest head
is along the shortest closed contour and is 20.1 m
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Fig. 12 Contours of
constant leakage; the levels
vary from 0 to 0.16 m/day
and the contour interval is
0.01 m/day. The highest
levels are at the endpoints

14 Concluding remarks

This paper is concerned with a new technique suitable for solving boundary-value problems that involve the operator
∇2n where n is a positive integer. The technique is a combination of existing methods: the analytic element method,
Wirtinger calculus, and the Adomian decomposition method.

The analytic element method is based upon the idea that boundary-value problems can be solved by superpo-
sition of suitably chosen base functions, which each contain certain degrees of freedom. Most base functions are
the mathematical representation of discontinuities of either the normal or the tangential component of the vector
field along a linear boundary segment. The base functions are then superimposed and their degrees of freedom
determined so as to model linear two-sided boundaries, boundaries of sub-domains, or boundaries that separate
parts of the domain from other parts.

Analytic elements, at least those existing at present, are all associated with a line or a curve and are dealt with in
isolation in terms of derivation, and derive their ultimate effect from their combined effect. Consider, for example,
the function

	 = 1

2π i

n∑

j=1

log
z − z j+1

z − z j
, (111)

where z j , j = 1, . . . , n represents the coordinates of the corner points of a closed polygon and where zn+1 = z1.
This function consists of the sum of n individual analytic elements, that each create their own field. Upon superposi-
tion, however, the resulting function is a constant everywhere, but jumps from the constant value zero to the constant
value one, valid inside the polygon. This kind of behavior is not only elegant from a mathematical viewpoint, but
has the advantage of straight forward numerical implementation in an object-oriented framework; each analytic
element is an object. Such an object-oriented framework is relatively straightforward in terms of design, because
the analytic elements do not inherit from one another, but can be viewed as existing side by side, rather than in a
hierarchical manner.

Wirtinger calculus has the advantage of compactness of notation and manipulation; using Wirtinger calculus,
vectors of two components in two-dimensional space can now be represented by a single complex number, and
tensors by half the number of components that would be necessary in Cartesian coordinates. The extension to gen-
eral two-dimensional problems from ones that are governed by Laplace’s equation is only one benefit of Wirtinger
calculus. The other one, is that the Laplacian becomes integrable because the (z, z̄) complex space is based on using
the imaginary characteristics of Laplace’s equation as non-Cartesian coordinates.

The decomposition method makes use of subsequent iteration of seeding functions; application of this method to
integrate the Laplacian of a function F , for example, would mean that a seeding expression be chosen for −∂2 F/∂x2

and then integrated twice with respect to y to obtain the next term in the expansion. Using Wirtinger calculus, this
process is greatly simplified; now singular line elements that are solutions to Laplace’s equation can be used as
seeding functions.

The combination of these three methods renders a technique, the GAEA, that makes it possible to solve problems
that would be very difficult to deal with otherwise. The GAEA is presented in terms of groundwater flow, but is by
no means restricted to that field. In fact, other suitable fields include diffusion and heat flow, elasto-dynamics, and
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poro-elasticity to mention just a few examples. The basic functions presented in this paper can be used for all of the
latter applications; effort expended on the optimization of the computational algorithm to evaluate these functions,
and on further improvements, such as the superblock approach, (see [21]) will benefit a multitude of applications.

The primary objective of this paper is to present the method, to indicate its applicability to numerous fields, to
demonstrate that it works, and to encourage further development by presenting the base functions necessary for
further development.
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Appendix A: Determination of the coefficients B
n

j

We need to verify that it is possible to choose the constants B
n

j in (71) in such a way that the functions �
n

m satisfy

the following condition:

∂2�
n

m

∂Z∂ Z̄
= �

n−1
m . (112)

We recall the form of �
n

m as

�
n

m =
n−1∑

j=0

B
n

j

(n − j)! (Z̄ − Z)n− j F
n+ j

m(Z), (113)

where the constants B
n

j are real,

ImB
n

j = 0, ∀ n, j. (114)

We differentiate (113) with respect to Z and obtain

∂�
n

m

∂Z
=

n−1∑

j=0

−B
n

j

(n − j − 1)! (Z̄ − Z)n− j−1 F
n+ j

m(Z) +
n−1∑

j=0

B
n

j

(n − j)! (Z̄ − Z)n− j F
n+ j−1

m(Z). (115)

We replace j by j − 1 in the first sum and adjust the limits accordingly

∂�
n

m

∂Z
=

n−1∑

j=1

−B
n

j−1

(n − j)! (Z̄ − Z)n− j F
n+ j−1

m(Z)

−B
n

n−1 F
2n−1

m(Z)+
n−1∑

j=0

B
n

j

(n − j)! (Z̄ − Z)n− j F
n+ j−1

m(Z). (116)

The two sums can now be combined

∂�
n

m

∂Z
=

n−1∑

j=0

B
n

j − B
n

j−1

(n − j)! (Z̄ − Z)n− j F
n+ j−1

m(Z)− B
n

n−1 F
2n−1

m(Z), (117)

where we define B
n

−1 as zero,

B
n

−1 = 0. (118)
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We differentiate (117) with respect to Z̄ and obtain

∂2�
n

m

∂Z∂ Z̄
=

n−1∑

j=0

B
n

j − B
n

j−1

(n − j − 1)! (Z̄ − Z)n− j−1 F
n+ j−1

m(Z). (119)

The function �
n−1

m must be equal to ∂2�
n

m/(∂Z∂ Z̄), compare (112), so that

n−1∑

j=0

B
n−1

j

(n − j − 1)! (Z̄ − Z)n− j−1 F
n+ j−1

m(Z) =
n−1∑

j=0

B
n

j − B
n

j−1

(n − j − 1)! (Z̄ − Z)n− j−1 F
n+ j−1

m(Z). (120)

Note that we extended to n − 1 the sum of terms that represents �
n−1

m , which implies that we have defined the

constants B
n

n as

B
n

n = 0, n ≥ 1. (121)

The conditions (120) are indeed satisfied, provided that the constants meet the following constraints

B
n

j = B
n

j−1 + B
n−1

j , j = 0, 1, 2, . . . n − 1, n = 1, 2, . . . . (122)

We may choose

B
0

0 = 1, (123)

so that the first few applications of (122) give

B
1

0 = 1, B
2

0 = B
2

−1 + B
1

0 = B
1

0 = 1, B
2

1 = B
2

0 + B
1

1 = 1.

The recursive relation (122) together with (123) makes it possible to determine all of the coefficients in the expres-
sion for the potential, with the exception of the coefficients am which are to be determined from the boundary
conditions along the element. Note that the coefficients can all be computed a priori; they are independent both of
the order m and the coefficient β.

Appendix B: Determination of the coefficients C
n

j

We demonstrate in this appendix that the coefficients C
n

j in (87) can be chosen such that the following condition is

met
∂2 H

n
m

∂Z∂ Z̄
= H

n−1
m . (124)

We differentiate (87) with respect to Z and obtain

∂H
n

m

∂Z
=

n−1∑

j=0

−C
n

j

(n − j − 1)! (Z̄ − Z)n− j−1
[

G
n+ j

m + (−1)n− j Ḡ
n+ j

m

]

+
n∑

j=0

C
n

j

(n − j)! (Z̄ − Z)n− j G
n+ j−1

m . (125)

We rewrite this equation as follows

∂H
n

m

∂Z
=

n−2∑

j=0

−C
n

j

(n − j − 1)! (Z̄ − Z)n− j−1
[

G
n+ j

m + (−1)n− j Ḡ
n+ j

m

]

+
n−1∑

j=0

C
n

j

(n − j)! (Z̄ − Z)n− j G
n+ j−1

m − C
n

n−1

[
G

2n−1
m − Ḡ

2n−1
m

]
+ C

n
n G

2n−1
m . (126)

123



The generating analytic element approach with application to the modified Helmholtz equation 187

The discharge function must be continuous across the line element for all n ≥ 1. The terms in the two sums vanish
along the element, and are thus continuous. The other terms exhibit jumps in their imaginary parts; these parts must
cancel and the constants must satisfy the following conditions

C
n

n = 2C
n

n−1, n = 1, 2, . . . , (127)

so that
∂H

n
m

∂Z
=

n−2∑

j=0

−C
n

j

(n − j − 1)! (Z̄ − Z)n− j−1
[

G
n+ j

m + (−1)n− j Ḡ
n+ j

m

]

+
n−1∑

j=0

C
n

j

(n − j)! (Z̄ − Z)n− j G
n+ j−1

m + C
n

n−1

[
G

2n−1
m + Ḡ

2n−1
m

]
.

We replace j by j − 1 in the first sum, and obtain

∂H
n

m

∂Z
=

n−1∑

j=1

−C
n

j−1

(n − j)! (Z̄ − Z)n− j
[

G
n+ j−1

m + (−1)n− j+1 Ḡ
n+ j−1

m

]

+
n−1∑

j=0

C
n

j

(n − j)! (Z̄ − Z)n− j G
n+ j−1

m + C
n

n−1

[
G

2n−1
m + Ḡ

2n−1
m

]
.

We define

C
n

−1 = 0, (128)

so that the lower limit in the first term can be changed from 1 to zero. We can now combine the two sums into a
single one

∂H
n

m

∂Z
=

n−1∑

j=0

(Z̄ − Z)n− j

(n − j)!
[(

C
n

j − C
n

j−1

)
G

n+ j−1
m − (−1)n− j+1C

n
j−1 Ḡ

n+ j−1
m

]

+C
n

n−1

[
G

2n−1
m + Ḡ

2n−1
m

]
. (129)

We can include the last term in the sum by extending it to j = n, using (127) so that
∂H

n
m

∂Z
=

n∑

j=0

(Z̄ − Z)n− j

(n − j)!
[(

C
n

j − C
n

j−1

)
G

n+ j−1
m − (−1)n− j+1C

n
j−1 Ḡ

n+ j−1
m

]
. (130)

We differentiate this expression with respect to Z̄ and obtain

∂2 H
n

m

∂Z∂ Z̄
=

n−1∑

j=0

(Z̄ − Z)n− j−1

(n − j − 1)!
[(

C
n

j − C
n

j−1

)
G

n+ j−1
m − (−1)n− j+1C

n
j−1 Ḡ

n+ j−1
m

]

+
n∑

j=0

(Z̄ − Z)n− j

(n − j)!
[
−(−1)n− j+1C

n
j−1 Ḡ

n+ j−2
m

]
.

We note that the contribution for j = 0 in the second sum is zero, because C
n

−1 = 0, by definition. We replace j

by j + 1 in the second sum, and obtain

∂2 H
n

m

∂Z∂ Z̄
=

n−1∑

j=0

(Z̄ − Z)n− j−1

(n − j − 1)!
[(

C
n

j − C
n

j−1

)
G

n+ j−1
m − (−1)n− j+1C

n
j−1 Ḡ

n+ j−1
m

]

+
n−1∑

j=0

(Z̄ − Z)n− j−1

(n − j − 1)!
[
−(−1)n− j C

n
j Ḡ
n+ j−1

m

]
.
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We can combine the two sums into a single one, which gives

∂2 H
n

m

∂Z∂ Z̄
=

n−1∑

j=0

(Z̄ − Z)n− j−1

(n − j − 1)!
[(

C
n

j − C
n

j−1

)
G

n+ j−1
m + (−1)n− j+1(C

n
j − C

n
j−1) Ḡ

n+ j−1
m

]
(131)

or

∂2 H
n

m

∂Z∂ Z̄
=

n−1∑

j=0

(Z̄ − Z)n− j−1

(n − j − 1)!
(

C
n

j − C
n

j−1

) [
G

n+ j−1
m + (−1)n− j−1 Ḡ

n+ j−1
m

]
. (132)

Expression (132) must be identical to expression (87) for n − 1, see (50),

∂2 H
n

m

∂Z∂ Z̄
= H

n−1
m =

n−1∑

j=0

(Z̄ − Z)n− j−1

(n − j − 1)! C
n−1

j

[
G

n+ j−1
m + (−1)n− j−1 Ḡ

n+ j−1
m

]
. (133)

Equations 132 and 133 are identical, provided that the constants C
n

j satisfy the following condition

C
n

j = C
n

j−1 + C
n−1

j , j = 0, 1, 2, . . . n − 1, n = 1, 2, . . . , (134)

where

C
n

−1 = 0 (135)

with the additional constraint given by (127)

C
n

n = 2C
n

n−1, n = 1, 2, . . . . (136)

It follows from (134) and (135) that

C
n

0 = C
n−1

0. (137)

The constants C
n

j may be computed as follows. First, (137) is applied to compute all constants C
n

0, using that

C
0

0 = 1. Next, C
1

1 is evaluated using (136), so that (134) can be used for n = 2. Again, (136) is applied to compute

C
2

2. Proceeding in this manner, alternately applying (134) and (136), all constants C
n

j can be evaluated.

Appendix C: The asymptotic expansion of the holomorphic function Gj

We will expand the functions G
n

j (Z) about 1/Z = 0 by first expanding G
0

j (Z), and then integrating the result n

times with respect to Z to obtain the expansion of G
n

j (Z)

G
0

j (Z) =
j∑

k=1

α jk

{
f
0

k(Z − 1)− (−1) j−k f
0

k(Z + 1)

}
+ P

n
j (Z), (138)

where we recall (61),

f
n

m(Z) = m!
(n + m)! Zm+n

⎡

⎣log Z −
n∑

j=1

1

m + j

⎤

⎦ , n ≥ 1, (139)

f
n

m(Z) = m!
(n + m)! Zm+n log Z , n = 0, (140)

which we may express as

	
ls

m = 1

2π
G
0

m = 1

2π

{
(Zm − 1) log

Z − 1

Z + 1
− 2sm log(Z + 1)+ Pm(Z)

}
, (141)
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where

sm = 0, m odd; sm = 1, m even. (142)

We will expand the function G
0

m about infinity as follows

G
0

m = (Zm − 1)
∞∑

j=1

β j Z− j − 2sm log Z − 2sm log

[
1 + 1

Z

]
+ Pm(Z). (143)

The polynomial Pm(Z) is such that it cancels all powers of Z greater than or equal to zero in this expansion. What
remains is

G
0

m =
∞∑

k=m+1

β j Zm−k −
∞∑

k=1

β j Z−k − 2sm

∞∑

k=1

(−1)k+1

k
Z−k − sm2 log Z . (144)

We combine terms and introduce new constants c
j
k

G
0

m =
∞∑

k=1

c
m

k Z−k − 2sm log Z , (145)

where we obtain expressions for the constants c
j
k by requiring that (144) be equal to (145).

The functions G
n

j are defined such that

dG
n

m

dZ
= G

n−1
m . (146)

The index j refers to the power of Z in expression (141), and merely affects the values of the constants c
j
k . Since

the form of the expressions does not depend on j , we may drop this index for the sake of brevity, provided that
we remember that the values of the constants in the result of our analysis depend upon the power j . We obtain the
far-field expansions of the functions G

n
j by integrating expression (145) n times. We apply this integration term by

term, and consider a single term h
n

m , defined as

h
0

m = Z−m (147)

and

dh
n

m

dZ
= h

n−1
m . (148)

We obtain, by repeated integration of h
0

m

h
n

m = (−1)n Zn−m

(m − 1)(m − 2) . . . (m − n)
n < m (149)

and for the special case that n = m

h
m

m = (−1)m−1

(m − 1)! log Z . (150)

The expression for n > m is

h
m+k

m = (−1)m−1

(m − 1)!k! Zk

⎡

⎣log Z −
k∑

j=1

1

j

⎤

⎦ . (151)
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We introduce constants α
n

m and β
n

m and δk as follows

α
n

m = (−1)n

(m − 1)(m − 2) . . . (m − n)
, n < m (152)

and

β
k

m = (−1)m−1

(m − 1)!k! . (153)

and, finally

δk =
k∑

j=1

1

j
. (154)

The expansion of G
n

j thus becomes

G
n

j =
∞∑

m=1

c
j
mh

n
m . (155)

We replace the limit ∞ by a finite number M and use the expressions obtained for h
n

m , which gives, using expressions

(149) and (151) , noting that the first one applies for m > n and the second one for m ≤ n

G
n

j =
M∑

m=n+1

c
j
mα

n
m Z−(m−n) +

n∑

m=1

c
j
m β

n−m
m Zn−m[log Z − δn−m]. (156)

We redefine indices to simplify this expression as follows

G
n

j =
M−n∑

k=1

c
k+n

jα
n

n+k Z−k +
n−1∑

k=0

c
n−k

jβ
k

n−k Zk[log Z − δk]. (157)

Note that the integrations with respect to Z introduce a constant for each value of n. Subsequent integrations
will result in the addition of a polynomial. We compute the coefficients in this polynomial by setting each of the
expansions of the functions G

n
j plus a constant equal to the corresponding original function, thereby building the

polynomial term by term as the process of integration progresses.

Notes on references

Please note: Master’s and Ph.D. theses are available from the University of Minnesota Library by logging onto the
library website of the University of Minnesota (www.umn.edu) and searching in MNCAT plus. All three theses
referred to in this paper show up in the search.
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21. Strack ODL, Janković I, Barnes R (1999) The superblock approach for the analytic element method. J Hydrol 226(3-4):179–187

123

http://dx.doi.org/10.1029/2008WR007128

	Abstract
	Abstract
	1 Introduction
	2 GAEA: The generating analytic element approach
	3 The non-singular holomorphic function
	4 The Taylor series
	5 The point sink
	6 Solving boundary-value problems
	7 The general case
	8 Line elements
	9 The line doublet
	9.1 The holomorphic functions F and f
	9.2 The potential 
	9.3 The discharge function

	10 The line-sink
	10.1 The holomorphic function G
	10.2 The potential 

	11 Boundary conditions
	12 Numerical considerations
	13 Applications
	13.1 A single line-sink in a semi-confined aquifer
	13.2 A leaky system of two aquifers
	13.3 A stream in the upper aquifer

	14 Concluding remarks
	Acknowledgements
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


